Дядя Вася
Зарегистрирован: 14.08.2002 Сообщения: 39 Откуда: Новосибирск
|
Добавлено: Вт Июн 18 2002 10:26 Заголовок сообщения: Re: Алгоритм Дейкстры |
|
|
Че есть ... квадратики и ромбики можешь и сам нарисовать )) Деpжи цитату: ============================================================
.. В ориентированной, неориентированной или смешанной (т. е. такой, где часть дорог имеет одностороннее движение) сети V найти кратчайший путь из заданной вершины i во все остальные вершины. Решение (Дейкстpа, 1959 г.) Алгоритм использует три массива из N (= числу вершин сети) чисел каждый. Первый массив A содержит метки с двумя значения: 0 (вершина еще не рассмотрена) и 1 (вершина уже рассмотрена); второй массив B содержит расстояния - текущие кратчайшие рас- стояния от до соответствующей вершины; третий массив с содержит номера вершин - k-й элемент С[k] есть номер предпоследней вершины на текущем кратчайшем пути из Vi в Vk. Матрица расстояний D[i,k] задает длины дуге D[i,k]; если такой дуги нет, то D[i,k] присваивается большое число Б, равное "машинной бесконечности". Теперь можно описать
* Алгоритм Дейкстры * 1 (инициализация). В цикле от 1 до N заполнить нулями массив A; заполнить числом i массив C; перенести i-ю строку матрицы D в массив B, A[i]:=1; C[i]:=0 (i - номер стартовой вершины) 2 (общий шаг). Hайти минимум среди неотмеченных (т. е. тех k, для которых A[k]=0); пусть минимум достигается на индексе j, т. е. B[j]B[j]+D[j,k], то (B[k]:=B[j]+D[j,k]; C[k]:=j) (Условие означает, что путь Vi ... Vk длиннее, чем путь Vi...Vj Vk). (Если все A[k] отмечены, то длина пути от Vi до Vk равна B[k]. Теперь надо) перечислить вершины, входящие в кратчайший путь). 3 (выдача ответа). (Путь от Vi до Vk выдается в обратном порядке следующей процедурой 3.1. z:=C[k]; 3.2. Выдать z; 3.3. z:=C[z]. Если z = О, то конец, иначе перейти к 3.2.
Для выполнения алгоритма нужно N раз просмотреть массив B из N элементов, т. е. алгоритм Дейкстры имеет квадратичную сложность: O(n2). |
|